Effects of Short-Chain Alcohols and Pyridine on the Hydration Forces between Silica Surfaces.

نویسندگان

  • Yoon
  • Vivek
چکیده

Forces between fully hydroxalated silica surfaces were measured using an atomic force microscope. The measurements were conducted in Nanopure water and in solutions containing various organic solutes such as methanol, ethanol, trifluoroethanol (TFE), and pyridine. The results obtained in Nanopure water showed a strong short-range repulsive force at distances below 15 nm. This non-DLVO force can be fitted to a double-exponential force law with its longer decay length (D2) of 2.4 nm. On the other hand, the force curve obtained at 15% methanol by volume can be fitted to the DLVO theory perfectly, showing no signs of hydration force. These results suggest that the hydration force originate from the unique water structure in the vicinity of silica, which apparently is seriously disrupted in the presence of methanol. Methanol may adsorb on silica, displacing water molecules from the silanol groups and, thereby, breaking the H-bond network within the hydration sheath around silica. The displacement of water by methanol is thermodynamically possible because the latter is more basic than the former. In 10-20% ethanol solutions, D2 decreases to 1.1-1.2 nm, indicating that ethanol also adsorbs on silica but to a lesser extent than methanol. In TFE and pyridine solutions, the hydration force changes little, suggesting that these solutes cannot readily displace water molecules from silanol groups. The results presented in this communication may have a bearing on the intoxication of humans by alcohols, which may be related to the dehydration of lipid membranes. Copyright 1998 Academic Press.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydration forces between silica surfaces: experimental data and predictions from different theories.

Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope...

متن کامل

Thermodynamic Modeling of the Effects of Wollastonite-Silica Fume Combination in the Cement Hydration and Sulfate Attack

Sulfate attack is a series of physico-chemical reactions between hardened cement paste and sulfate ions. Sulfate ion penetration into the hydrated cement results in the formation of voluminous and deleterious phases such as gypsum and ettringite which are believed to cause deterioration and expansion of concrete. Concrete deterioration due to sulfate attack depends on many parameters, however, ...

متن کامل

Rheology of Silica Dispersions in Organic Liquids: New Evidence for Solvation Forces Dictated by Hydrogen Bonding

Dispersions of hydrophilic fumed silica are investigated in a range of polar organic media. The silica forms stable, low-viscosity sols exhibiting shear thickening behavior in a host of liquids, including ethylene glycol and its oligomers and short-chain alcohols, such as n-propanol. In contrast, the silica flocculates into colloidal gels in other liquids, such as glycols with methyl end-caps a...

متن کامل

Existence of hydration forces in the interaction between apoferritin molecules adsorbed on silica surfaces.

The atomic force microscope, together with the colloid probe technique, has become a very useful instrument to measure interaction forces between two surfaces. Its potential has been exploited in this work to study the interaction between protein (apoferritin) layers adsorbed on silica surfaces and to analyze the effect of the medium conditions (pH, salt concentration, salt type) on such intera...

متن کامل

Thermodynamical and Experimental Study of the Effects of Ball Clay-Silica Fume Combination on the Hydration and Strength

The production of ordinary Portland cement (OPC) as the most expensive constituent of concrete is associated with destructive environmental effects and significant energy consumption. Thus, the use of supplementary cementitious materials such as Natural or synthetic pozzolans is a fundamental solution that affects the kinetics of hydration of cementitious materials. In this article, to evaluate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 204 1  شماره 

صفحات  -

تاریخ انتشار 1998